Valves, Butterfly

Butterfly Valve
Low Cost, Lever Operated, Lug or Wafer Pattern, 225 psig

The most critical aspect of the Series BFV Butterfly Valves is the cartridge seat design, which alleviates installation problems associated with common "dove tail design" seats. Valve torque is lower and more consistent because the seat dynamics do not rely on being mated between two flanges. Precision machining of the disc and body allow the cartridge design to maintain a tighter disc to seat tolerance, providing a perfect low torque seal each and every time the valve is cycled. Seat to disc seal is independent of flange support and capable of full rated end service. Select from wafer or lug patterns with either 10 position locking lever or manual gear operator. Standard valves provide bubble tight sealing to 225 psi (15.5 bar) and are designed to comply with MSS-SP47 and API609.

Series BFV Butterfly Valves

- Phenolic hardened cartridge seat design for extended service and ease of replacement. Can be used for vacuum service.
- Extended neck for insulation - no fabricated extensions required.
- Machined flats attach disc/stem - no pins.
- Valve features a retainer lip for dual end service.
- Triple seal reduces possibility of external leakage.
- Silicone free from the factory - no aftermarket cleaning required.

SPECIFICATIONS

Wetted Materials:
- Body material: Ductile iron; Disc: 316 SS; Seat and O-ring: EPDM or PTFE; Stem: 410 SS.
- Temperature Limits: Disc: EPDM -50 to 250°F (-46 to 121°C), PTFE: 0 to 390°F (-18 to 199°C).
- Bearings: Nylatron.
- Flow Rate: See Cv chart.
- Operator: 2 to 6", 10-position locking hand lever; 8 to 12", manual gear.

APPLICATIONS
- Perfect for on-off or throttling service
- Ideal for shut-off of water in chillers, cooling towers, and thermal storage systems
- Irrigation systems
- Tank trucks
- Sewage systems, waste water treatment

CV Values

<table>
<thead>
<tr>
<th>Size</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>0.15</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>3"</td>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>4"</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>5"</td>
<td>0.8</td>
<td>1.6</td>
<td>2.4</td>
<td>3.2</td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td>6"</td>
<td>1.2</td>
<td>2.4</td>
<td>3.6</td>
<td>4.8</td>
<td>6.0</td>
<td>7.2</td>
<td>8.4</td>
<td>9.6</td>
</tr>
<tr>
<td>8"</td>
<td>1.5</td>
<td>3.0</td>
<td>4.5</td>
<td>6.0</td>
<td>7.5</td>
<td>9.0</td>
<td>10.5</td>
<td>12.0</td>
</tr>
<tr>
<td>10"</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
<td>10.0</td>
<td>12.0</td>
<td>14.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Cv Values

Cv is the number of U.S. GPM of 60°F water that will pass through the valve with a 1 PSI pressure drop.