DIMENSIONS

Service: Air and non-combustible, compatible gases.
Wetted Materials: Consult factory.
Housing Material: Die cast aluminum case and bezel.
Accuracy: ±1.5% for 0.25 in and ±0.25 in w.c. ranges. Ranges 0.5 in to 2.5 in w.c. and corresponding bidirectional (except ±2.5 in w.c.): ±1%; All other ranges: ±0.5% @ 77°F (25°C) including hysteresis and repeatability (after 1 hour warm-up).
Stability: < ±1% per year.
Overpressure Limits: Ranges (uni- and corresponding bidirectional), ≤ 1 in w.c.: 9 psi; 2.5 and 5 in w.c.: 1.5 psi; 10 in w.c.: 3 psi; 25 in w.c.: 8 psi; 50 in w.c.: 15 psi; 100 in w.c.: 20 psi.
Temperature Limits: 32 to 140°F (0 to 60°C).
Compensated Temperature Limits: 32 to 140°F (0 to 60°C).
Thermal Effects: 0.020%/°F (0.036/°C) from 77°F (25°C). For 0.25˝ and ±0.25 in w.c. ranges: ±0.03%/°F (±0.054%/°C).
Power Requirements: 12-24 VAC/VDC.
Power Consumption: 3 VA max.
Output Signal: 4 to 20 mA DC into 900 ohms max.
Zero & Span Adjustments: Accessible via menus.
Response Time: 250 ms (dampening set to 1).
Display: Backlit 4 digit LCD 0.4” height LED indicators for set point and alarm status.
Electrical Connections: 15 pin male high density D-Sub connection. 18” (46 cm) cable with 10 conductors included.
Process Connections: 1/8” female NPT. Side or back connections.
Mounting Orientation: Mount unit in vertical plane.
Size: 5” (127 mm) O.D. x 3-1/8” (79.38 mm); For -SS Bezel: 4-3/4” (120.7 mm) O.D. x 2-21/32” (67.5mm).
Weight: 1.75 lbs. (794 g).
Agency Approvals: CE.

SWITCH SPECIFICATIONS

Switch Type: 2 SPDT relays.
Electrical Rating: 1 amp @ 30 VAC/VDC.
Set Point Adjustment: Adjustable via keypad on face.
INSTALLATION

LOCATION: Select a clean, dry location free from shock and vibration where temperature limits will not be exceeded. Distance from the transmitter to the receiver is limited only by total loop resistance. See ELECTRICAL CONNECTIONS. Tubing feeding pressure to the instrument can be practically any length required, but long lengths will increase response time slightly.

POSITION: All standard models are calibrated for use in a vertical mounting position. Standard models will perform properly at other angles but should be spanned and zeroed in the position in which they will be used.

WARM-UP: It is recommended to power up the DH3 unit and allow a 1-hour warm-up period before taking measurements. This will stabilize the measurements and provide the best accuracy.

PRESSURE CONNECTIONS: For installation convenience two sets of 1/8˝ female NPT pressure ports are supplied. Be sure to seal the unused ports with pipe plugs included.

- **Positive Pressure** - Connect tubing to HIGH PRESSURE port and vent LOW PRESSURE port to atmosphere.

- **Negative (Vacuum) Pressure** - Connect tubing to LOW PRESSURE port and vent HIGH PRESSURE port to atmosphere. (When operating this device in a dusty environment, install an optional A-331 Filter Vent Plug in the vented port to keep interior clean.)

- **Differential Pressure** - Connect tubing from the higher source to HIGH PRESSURE port and from the lower source to LOW PRESSURE port.

Figure A

1-1/2 [38.1]

5/16 [7.94]

11/16 [17.46]

1/2 [12.70]

3/4 [19.05]

1-3/32 [27.78]

(3) Ø3/16 [4.77] HOLES EQUALLY SPACED ON A 4-1/8 [104.78] B.C.

Ø1/2 [12.70] HOLE FOR HIGH PRESSURE CONNECTION

Ø1/2 [12.70] HOLE FOR LOW PRESSURE CONNECTION
MOUNTING: The DH3 may be either panel (flush) mounted or surface mounted.

Panel Mounting - Cut a 4-3/4” or 121 mm diameter hole in the panel and insert the unit from the front. Slip on the mounting ring with the stepped side facing rear. Next, fit the snap ring into the narrow groove at back edge of bezel. Thread four (6) 32 x 1-1/4” mounting screws into tapped holes in mounting ring and set it against snap ring. Tighten screws against rear of panel. See Figure B.

Surface Mounting - Drill (3) 3/16” (4.76 mm) diameter holes for mounting and cut a 9/16” x 1-1/2” (14.3 x 38.1 mm) opening for access to terminal block as indicated in Figure B. If rear pressure connections are to be used, also provide 1/2” diameter holes as shown in Figure A and Figure C. Insert 6-32 machine screws from rear of mounting surface, thread into tapped holes on back of transmitter and tighten.
For SS Bezel Installation
Provide a 4-9/16” opening in panel. Insert gage and secure with supplied mounting hardware.

WIRING
The DH3 uses a standard 15 pin male high density D-Sub connector available from most electronic distributors. A pre-wired 18” cable is included with each unit. See below table for cable color wiring information.

<table>
<thead>
<tr>
<th>Function</th>
<th>15 PIN Connector Terminal</th>
<th>Cable Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-24 VAC/VDC Power</td>
<td>1</td>
<td>Brown</td>
</tr>
<tr>
<td>12-24 VAC/VDC Power</td>
<td>6</td>
<td>Yellow</td>
</tr>
<tr>
<td>4-20mA XMTR Output -</td>
<td>2</td>
<td>Black</td>
</tr>
<tr>
<td>4-20mA XMTR Output +</td>
<td>11</td>
<td>Red</td>
</tr>
<tr>
<td>SP1 Relay N/O</td>
<td>12</td>
<td>Violet</td>
</tr>
<tr>
<td>SP1 Relay Com</td>
<td>13</td>
<td>Grey</td>
</tr>
<tr>
<td>SP1 RELAY N/C</td>
<td>14</td>
<td>White</td>
</tr>
<tr>
<td>SP2 or ALarm Relay N/O</td>
<td>15</td>
<td>Blue</td>
</tr>
<tr>
<td>SP2 or ALarm Relay Com</td>
<td>10</td>
<td>Green</td>
</tr>
<tr>
<td>SP2 or ALarm Relay N/C</td>
<td>5</td>
<td>Orange</td>
</tr>
</tbody>
</table>

NOTES:
1. If 12-24 VDC power is used, the polarity is unimportant.
2. Wire in accordance with an equivalent national standard or code. Use copper conductors only rated for 60°C.
3. All terminals are rated CLASS 2.
4. ISOLATION: All inputs and outputs to each other: 500 VAC.
5. 4-20 mA Transmitter – Check the specifications for the device receiving this signal for input resistance. Typical 250 to 600 Ω, 600 Ω maximum.
Key Functions

<table>
<thead>
<tr>
<th>Keys</th>
<th>Home Position Function</th>
<th>Main Menu Function</th>
<th>Sub Menu Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP/AL</td>
<td>Sequences the display through SET POINT and ALARM settings</td>
<td>Return to home position</td>
<td>Return to home position</td>
</tr>
<tr>
<td>MENU</td>
<td>Allows access to the menus</td>
<td>Return to home position</td>
<td>Return to previous menu</td>
</tr>
<tr>
<td>UP ARROW</td>
<td>Sequences through menus</td>
<td></td>
<td>Increments a value</td>
</tr>
<tr>
<td>DOWN ARROW</td>
<td>Sequences through menus</td>
<td></td>
<td>Decrements a value</td>
</tr>
<tr>
<td>ENTER</td>
<td>Displays full scale range of unit</td>
<td>Enter into SUB MENU</td>
<td>Changes a value or setting. Press ENTER and display will blink. Adjust with UP or DOWN arrows. Press ENTER to store. Display will stop blinking.</td>
</tr>
<tr>
<td>RST</td>
<td>Clears or resets an Alarm (alarm set for manual reset)</td>
<td></td>
<td>Peak/Valley SUB MENU resets display to present value.</td>
</tr>
</tbody>
</table>
SETTING SET POINTS AND ALARMS

The hot key provides direct access to the Set Point and Alarm MENU. The Set Point and Alarm MENUS that are displayed are based upon the Control (CtrL) SUB MENU.

SET POINT ADJUSTMENT

Adjusting the DH3 Set Points is quick and simple. Instead of setting a set point and deadband, simply adjust \(SP1H \) or \(SP2H \) for the desired relay turn on point, and then adjust \(SP1L \) or \(SP2L \) for the desired relay turn off point.

In the above graph, an instrument with a 1.0˝ range would have the SP1 relay turn on at 0.8˝ and off at 0.4˝. \(SP1H \) sets the relay turn on point, and \(SP1L \) sets the relay turn off point. The relays outputs normally function in the direct acting mode, which means the relays turn on with an increase in pressure. SP1 may be configured to act as a reverse acting relay (refer to the 1SP SUB MENU setting, page 15). When set for reverse acting, \(SP1H \) sets the relay turn OFF point, and \(SP1L \) sets the relay turn ON point. SP2 is always direct acting.
Menu Map

Continued

Settings

Main Menus

Sub Menus

Unavailable for bi-directional ranges and ranges above 25 in. W.C.
Menus present only in pressure operation.
Main Menu Selections (Upper Right Display Reads MENU)

SECr Security - Lock out access to Set Point and Alarm settings, or lock out access to all settings.

OPEr Operation - Selection of Pressure, Velocity or Flow and corresponding engineering units.

OUt Output - Select a Single Set Point, 2 Set Points, or a Set Point and an Alarm mode of operation.

d.S Display - Monitor and adjust display related settings: Peak, Valley, display resolution, % output and dampening.

AdU Advanced functions - Modify advanced function parameters, transmitter output scaling, Maintenance Set Point settings and calibration.
MAIN MENUS and SUB MENUS

SECr (Security) MAIN MENU

SECr is the only SUB MENU in the security MENU. When the security SUB MENU is selected, the present security level is displayed in the upper right hand display. To change the security level, adjust the number displayed to the number shown in the following table for the desired security level.

<table>
<thead>
<tr>
<th>Security Level Displayed</th>
<th>Access</th>
<th>Password Value to Enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All menus access</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Menu Access</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>SP/AL Locked</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SP/AL Access</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Menus Locked</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>All settings locked</td>
<td>111</td>
</tr>
</tbody>
</table>

The password values shown in the table cannot be altered, so retain a copy of these pages for future reference.

OPEr (Operation) MAIN MENU

The OPEr MENU selects the measurement type of the instrument. The SUB MENUS are:

- **PrES** - Pressure
- **KFAC** - K Factor
- **XDIM** - X Dimension
- **UEL** - Velocity
- **ArEA** - Area
- **YDIM** - Y Dimension
- **FLO** - Flow
- **DIA** - Diameter

If the instrument is set for Velocity, the OPEr MENU will have an additional KFAC SUB MENU. If the instrument is set for Flow, the OPEr MENU will have additional KFAC and ArEA SUB MENUS. These will be discussed under Velocity and Flow. When scrolling through the OPEr SUB MENUS, the measurement type the unit is currently set for will show the units in the upper right display. The other measurement types will have a blank upper right display.
For pressure measurement, the following units are available:

- NWC - Inches of water column
- FTWC - Feet of water column
- MMWC - Millimeters of water column
- CMWC - Centimeters of water column
- PSI - Pounds per square inch
- INHG - Inches of mercury
- MMHG - Millimeters of mercury
- MBAR - Millibar
- PA - Pascal
- KPA - Kilopascals
- HPA - Hectopascals
- OZIN - Ounce inches

Table 1 - Pressure Range vs. Available Units

<table>
<thead>
<tr>
<th>INWC</th>
<th>FTWC</th>
<th>MMWC</th>
<th>CMWC</th>
<th>PSI</th>
<th>INHG</th>
<th>MMHG</th>
<th>MBAR</th>
<th>PA</th>
<th>KPA</th>
<th>HPA</th>
<th>OZIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>2.540</td>
<td>.2540</td>
<td></td>
<td>.1868</td>
<td>.2491</td>
<td>24.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2500</td>
<td>6.350</td>
<td>.6350</td>
<td></td>
<td>.4671</td>
<td>.6227</td>
<td>62.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5000</td>
<td>12.70</td>
<td>1.270</td>
<td></td>
<td>.9342</td>
<td>1.245</td>
<td>124.5</td>
<td>1.245</td>
<td>1.245</td>
<td>1.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>25.40</td>
<td>2.540</td>
<td></td>
<td>1.868</td>
<td>2.491</td>
<td>249.1</td>
<td>2.491</td>
<td>2.491</td>
<td>2.491</td>
<td>2.491</td>
<td>5.780</td>
</tr>
<tr>
<td>2.500</td>
<td>6.350</td>
<td>.6350</td>
<td></td>
<td>.1839</td>
<td>4.671</td>
<td>62.27</td>
<td>62.27</td>
<td>62.27</td>
<td>62.27</td>
<td>62.27</td>
<td>1.445</td>
</tr>
<tr>
<td>5.000</td>
<td>12.70</td>
<td>1.270</td>
<td></td>
<td>.1806</td>
<td>.3678</td>
<td>9.342</td>
<td>12.45</td>
<td>124.5</td>
<td>124.5</td>
<td>124.5</td>
<td>2.890</td>
</tr>
<tr>
<td>10.00</td>
<td>.8333</td>
<td>254.0</td>
<td>25.40</td>
<td>.3613</td>
<td>.7356</td>
<td>18.68</td>
<td>24.91</td>
<td>249.1</td>
<td>249.1</td>
<td>249.1</td>
<td>5.780</td>
</tr>
<tr>
<td>25.00</td>
<td>2.083</td>
<td>63.50</td>
<td>63.50</td>
<td>.9032</td>
<td>1.839</td>
<td>46.71</td>
<td>62.27</td>
<td>62.27</td>
<td>62.27</td>
<td>62.27</td>
<td>14.45</td>
</tr>
<tr>
<td>50.00</td>
<td>4.167</td>
<td>127.0</td>
<td>127.0</td>
<td>.1806</td>
<td>3.678</td>
<td>9.342</td>
<td>124.5</td>
<td>124.5</td>
<td>124.5</td>
<td>124.5</td>
<td>28.90</td>
</tr>
<tr>
<td>100.0</td>
<td>8.333</td>
<td>254.0</td>
<td>254.0</td>
<td>3.613</td>
<td>7.356</td>
<td>186.8</td>
<td>249.1</td>
<td>249.1</td>
<td>249.1</td>
<td>249.1</td>
<td>57.80</td>
</tr>
</tbody>
</table>

Note: OVFL (over flow) or UnFL (under flow) will appear when the ranges have been exceeded above or below full scale by 2%.

For velocity measurement, the following units are available:

- SFPM - Standard feet per minute
- M/S - Meters per second

Table 2 - Available Velocity Ranges

<table>
<thead>
<tr>
<th>INPUT RANGE IN WC</th>
<th>SFPM RANGE</th>
<th>M/S RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.1</td>
<td>0 - 1266</td>
<td>0 - 6.431</td>
</tr>
<tr>
<td>0 - 0.25</td>
<td>0 - 2002</td>
<td>0 - 10.17</td>
</tr>
<tr>
<td>0 - 0.5</td>
<td>0 - 2832</td>
<td>0 - 14.39</td>
</tr>
<tr>
<td>0 - 1</td>
<td>0 - 4004</td>
<td>0 - 20.35</td>
</tr>
<tr>
<td>0 - 2.5</td>
<td>0 - 6332</td>
<td>0 - 32.17</td>
</tr>
<tr>
<td>0 - 5</td>
<td>0 - 8954</td>
<td>0 - 45.48</td>
</tr>
<tr>
<td>0 - 10</td>
<td>0 - 12.66 x IK</td>
<td>0 - 64.33</td>
</tr>
<tr>
<td>0 - 25</td>
<td>0 - 20.02 x IK</td>
<td>0 - 101.7</td>
</tr>
</tbody>
</table>

Note: Air velocity and flow readings are based upon standard dry air conditions with an ambient temperature of 70°F and a barometric pressure of 29.92 INHG.
For flow measurements the following units are available:

- **SCFM** - Standard cubic feet per minute
- **M3/H** - Cubic meters per hour

FLOr (Flow Range) SUB MENU
- **LO** - 99.99 x 1K flow range
- **HI** - 999.9 x 1K flow range

Tables 3-6 show the flow ranges available, and the maximum duct size that can be set for each input range.

Table 3

<table>
<thead>
<tr>
<th>RANGE IN WC</th>
<th>SFPM RANGE</th>
<th>MAX. DUCT SIZE, SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>99.99 x 1K</td>
<td>78.9</td>
</tr>
<tr>
<td>0.25</td>
<td>99.99 x 1K</td>
<td>49.9</td>
</tr>
<tr>
<td>0.5</td>
<td>99.99 x 1K</td>
<td>35.3</td>
</tr>
<tr>
<td>1</td>
<td>99.99 x 1K</td>
<td>24.9</td>
</tr>
<tr>
<td>2.5</td>
<td>99.99 x 1K</td>
<td>15.7</td>
</tr>
<tr>
<td>5</td>
<td>99.99 x 1K</td>
<td>11.1</td>
</tr>
<tr>
<td>10</td>
<td>99.99 x 1K</td>
<td>7.8</td>
</tr>
<tr>
<td>25</td>
<td>99.99 x 1K</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>RANGE IN WC</th>
<th>SFPM RANGE</th>
<th>MAX. DUCT SIZE, SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>999.9 x 1K</td>
<td>789.8</td>
</tr>
<tr>
<td>0.25</td>
<td>999.9 x 1K</td>
<td>499.5</td>
</tr>
<tr>
<td>0.5</td>
<td>999.9 x 1K</td>
<td>353.1</td>
</tr>
<tr>
<td>1</td>
<td>999.9 x 1K</td>
<td>249.7</td>
</tr>
<tr>
<td>2.5</td>
<td>999.9 x 1K</td>
<td>157.9</td>
</tr>
<tr>
<td>5</td>
<td>999.9 x 1K</td>
<td>111.7</td>
</tr>
<tr>
<td>10</td>
<td>999.9 x 1K</td>
<td>78.9</td>
</tr>
<tr>
<td>25</td>
<td>999.9 x 1K</td>
<td>49.9</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>RANGE IN WC</th>
<th>M3/H RANGE</th>
<th>MAX. DUCT SIZE M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>99.99 x 1K</td>
<td>4.32</td>
</tr>
<tr>
<td>0.25</td>
<td>99.99 x 1K</td>
<td>2.73</td>
</tr>
<tr>
<td>0.5</td>
<td>99.99 x 1K</td>
<td>1.93</td>
</tr>
<tr>
<td>1</td>
<td>99.99 x 1K</td>
<td>1.37</td>
</tr>
<tr>
<td>2.5</td>
<td>99.99 x 1K</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>99.99 x 1K</td>
<td>0.61</td>
</tr>
<tr>
<td>10</td>
<td>99.99 x 1K</td>
<td>0.43</td>
</tr>
<tr>
<td>25</td>
<td>99.99 x 1K</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>RANGE IN WC</th>
<th>M3/H RANGE</th>
<th>MAX. DUCT SIZE M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>99.99 x 1K</td>
<td>43.19</td>
</tr>
<tr>
<td>0.25</td>
<td>99.99 x 1K</td>
<td>27.31</td>
</tr>
<tr>
<td>0.5</td>
<td>99.99 x 1K</td>
<td>19.3</td>
</tr>
<tr>
<td>1</td>
<td>99.99 x 1K</td>
<td>13.64</td>
</tr>
<tr>
<td>2.5</td>
<td>99.99 x 1K</td>
<td>8.63</td>
</tr>
<tr>
<td>5</td>
<td>99.99 x 1K</td>
<td>6.10</td>
</tr>
<tr>
<td>10</td>
<td>99.99 x 1K</td>
<td>4.31</td>
</tr>
<tr>
<td>25</td>
<td>99.99 x 1K</td>
<td>2.73</td>
</tr>
</tbody>
</table>

KFAC SUB MENU

KFAC K Factor - becomes accessible if the instrument is set for Velocity or Flow. When the DH3 is used with a Pitot tube, the manufacturer may specify a K Factor. The adjustment range is 0.01 to 2.00. The factory setting is 1.
ArEA, DIA, XDIM and YDIM SUB MENUS

These SUB MENUS become accessible if the instrument is set for flow. When measuring flow, the area of the duct must be specified. Tables 3 and 4 show the input range vs maximum flow and duct size. For a rectangular duct the maximum size is specified in square feet or meters. For a circular duct the maximum size is specified as the diameter. X, Y and circular dimensions are entered in feet with 0.01 foot resolution for \(FLOr = LD \) and 0.1 foot resolution for \(FLOr = HI \), or entered in millimeters with 1 millimeter resolution.

ArEA - Area, select **CIR** for a circular duct or **RECT** for a rectangular duct. If a circular duct is selected, the **DIA** SUB MENU will be activated. If a rectangular duct is selected, the **XDIM** and **YDIM** SUB MENUS will be activated.

DIA - Diameter, enter the diameter of a duct
XDIM - Enter the “X” dimension of a duct
YDIM - Enter the “Y” dimension of a duct

OUT (Output) MAIN MENU

The **OUT** MENU selects the output type of the instrument. The SUB MENUS are:

- **Ctrl** - Control type
- **ISP** - SP1 reverse or direct acting
- **AL** - Alarm type
- **ALrE** - Alarm reset, manual or auto
- **AL.H** - Alarm inhibit
- **ALDL** - Alarm delay
Ctrl (Control) SUB MENU

1SP - Single set point
2SP - Two fully independent set points
SPAL - Single set point and alarm

1SP (SP1 Reverse or Direct Acting) SUB MENU

DIR - Direct. Relay turns on with increasing pressure
REV - Reverse. Relay turns on with decreasing pressure

Direct Acting

Time

0

100

Process

SPH

SPL

Relay Inactive

Relay Active

Reverse Acting

Time

0

100

Process

SPH

SPL

Relay Inactive

Relay Active
The following alarm function SUB MENUS are activated when $C + L$ is set to $SPAL$:

AL (Alarm Type) SUB MENU

- **HI** - High alarm
- **LO** - Low alarm
- **HIL O** - For a high/low guardband type alarm

ALARM ADJUSTMENT

Alarm settings are dependent upon the selected alarm mode. The DH3 differential pressure controller alarm may be configured as a High Alarm, Low Alarm, or High/Low Alarm. Alarm settings are all absolute and may be set to anywhere within the range of the instrument. The dead bands of the alarms are fixed at 1% of full scale.
AL0S (Alarm Output State) SUB MENU

CLOSE - Alarm relay contacts close upon alarm condition
OPEN - Alarm relay contacts open upon alarm condition

ALrE (Alarm Reset) SUB MENU

ONOF - Automatic reset
HOLD - Manual reset. An alarm is reset by the RESET key on the front panel.

AL.H (Low Alarm Inhibit) SUB MENU

ON - Alarm inhibit is on
OFF - Alarm inhibit is off

If **AL.H** is selected ON, a low alarm condition is suspended upon power up until the process value passes through the alarm set point once.

AL DL (Alarm Delay) SUB MENU

Sets the amount of time an alarm condition must be continuously met before the alarm condition is recognized. The alarm delay is adjustable from 0-3600 seconds.

d.S (Display) MAIN MENU

PEAK - Peak value
rESO - Resolution
VALy - Valley value
PD.S - Process display
ZERO - Zero
DAMP - Dampening level

PEAK (Peak) SUB MENU

The Peak feature stores the highest pressure reading the instrument has measured since the last reset or power up. At power up **PEAK** is reset to the present pressure reading. To manually reset the **PEAK** value, press the RESET key while in the **PEAK** SUB MENU.

VALy (Valley) SUB MENU

The valley feature stores the lowest pressure reading the instrument has measured since the last reset or power up. At power up **VALy** is reset to the present pressure reading. To manually reset the **VALy** value, press the RESET key while in the **VALy** SUB MENU.
The DH3 is capable of displaying four digits of resolution. However, at very low pressures the instability of the pressure may cause fluctuations in the least significant digit causing the least significant digit to be of little value. Three digit resolution (3DIG) can only be active when there is at least one digit to the right of a decimal.

- **3DIG** - Set display for 3 digit resolution
- **4DIG** - Set display for 4 digit resolution

Pd.S (Process Display) SUB MENU

- **STD** - Display reads pressure, velocity, or flow values
- **PCT** - Display reads % of full scale value

When the display is reading percent, **PCT** is displayed in the upper right of the display. The percent display is only available in pressure operation.

DAMP (Dampening) SUB MENU

Adjust from 1-16

Dampening stabilizes the display from instabilities due to things such as vibration and excessive pressure fluctuations. The dampening setting adjusts the amount of readings that are averaged for each display update. Adjust the dampening value until the display reads a stable value for the application.

AdU (Advanced) MAIN MENU

- **POL** - Process output low
- ** ZERO** - Zero calibration
- **POH** - Process output high
- ** SPAN** - Span calibration
- **MSP1** - Maintenance set point 1
- **MSP2** - Maintenance set point 2

POL and POH (Process Output Low and High) SUB MENUS

This feature is used in pressure operation only.

Process output low and high are used to scale the 4-20 mA output. Set **POL** to the desired display reading for 4mA output, and set **POH** to the desired display reading for 20 mA output. **POH** must be higher than **POL**. **POL** may be adjusted 2% BELOW minimum scale up to **POH**. **POH** may be adjusted from **POL** to 2% ABOVE maximum scale.
MSP1 and MSP2 (Maintenance Set Point 1 & 2) SUB MENUS

Adjust for the desired maintenance set points when the unit is placed in the maintenance mode. The deadband is fixed at 2% of full scale. To enter or leave the maintenance mode, press and hold the SP/AL for 8 seconds.

ZERO and SPAN (Calibration of Zero and Span) SUB MENUS

The lower display reads CAL in this mode.

ZERO Calibration

Note: For accurate calibration, do not apply any pressure when performing this function.

With the display reading ZERO, press the ENTER key. The upper display will blink. Press ENTER again to complete the zeroing of the instrument or press the MENU key to cancel.

SPAN Calibration

With the display set to SPAN, apply full scale pressure to the unit. Press the ENTER key. The upper display will blink. Press ENTER again to complete the calibration or press the MENU key to cancel.