If more convenient, approximate correction factors may be determined using the following formulas.

A. Pressure: \[Q_2 = Q_1 \times \frac{P_1 \times T_2}{P_2 \times T_1} \]

where:
- \(Q_1 \) = Actual or Observed Flowmeter Reading
- \(Q_2 \) = Standard Flow Corrected for Pressure and Temperature
- \(P_1 \) = Actual Pressure (14.7 psia + Gage Pressure)
- \(P_2 \) = Standard Pressure (14.7 psia, which is 0 psig)
- \(T_1 \) = Actual Temperature (460 °R + Temp °F)
- \(T_2 \) = Standard Temperature (530 °R, which is 70 °F)

B. Specific Gravity: \[Q_2 = Q_1 \times \sqrt{\frac{1}{S.G.}} \]

where:
- \(Q_1 \) = Observed Flowmeter Reading
- \(Q_2 \) = Standard Flow Corrected for Specific Gravity
- \(S.G. \) = Specific gravity of gas being used in flowmeter originally calibrated for air.

Note: The corrections shown in the curves and in the formulas are for variations in specific gravity and internal pressure only. Further correction may be necessary for variations in viscosity and changes in type of flow from laminar to turbulent or vice versa. This is particularly true in the case of extremely low flows of the lighter gases. Nevertheless these charts and correction factors can be quite useful when dealing with small changes in pressure and specific gravity.

*Measured at discharge on all but TMV units. Inlet pressure on TMV models.