Series IEFS

INSERTION MAGNETIC FLOW METER INSTRUCTIONS
TABLE OF CONTENTS

General Information
General Information, Features, Specifications .. Page 1
Installation
Piping, Distorted Flows, Immersion, Positioning the Meter Page 2
Fitting Installation, Meter Installation ... Page 3
Proper Depth Setting ... Page 4
Dimension “C”, Pipe Wall Thickness ... Page 5
Straight Pipe Recommendations ... Page 6
Full Pipe Recommendations... Page 7

Electrical Connections
General Electrical Guidelines, Power, Forward (and Reverse) Flow Output, Grounding Guidelines, Grounding Diagram .. Page 8

Connections Diagrams
Counter or PLC, Series BAT 4 to 20 mA Output .. Page 9
RTI Display and Proportional Feed, RTI & 4 to 20 mA Output, Dual RTI Displays .. Page 10

Operation & Maintenance
Zero Adjustment, Minimum Flow, Presence of Flow Indication, Filtering, Electrode Coating ... Page 11
Calibration (“K-Factor”), Flow Rates in Gallons Per Minute Page 12

Troubleshooting
Problems, Probable Causes and Things to Try .. Page 13

TABLES, DIAGRAMS & CHARTS

Features ... Page 1
Distorted Flows, Positioning the Meter .. Page 2
Meter Installation, Sensor Removal ... Page 3
Proper Depth Setting ... Page 4
Dimension “C”, Pipe Wall Thickness ... Page 5
Straight Pipe Recommendations ... Page 6
Full Pipe Recommendations.. Page 7
Grounding Diagram ... Page 8
Connection Diagrams: Counter or PLC, Series BAT 4 to 20 mA Output Page 9
Connection Diagrams: Series RTI Display and Proportional Feed, RTI & 4-20 mA Output, Dual Series RTI Displays .. Page 10
Zero Adjustment, Flow Rates in Gallons Per Minute Page 11
IEFS K-factors (in Pulses/Gallon) for various pipe sizes Page 12
Troubleshooting Problems, Probable Causes and Things to Try Page 13

SPECIFICATIONS*

<table>
<thead>
<tr>
<th>Pipe Sizes</th>
<th>Flow Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3” to 48” (up to 60” when ordered with 12” extension option)</td>
<td>0.28 to 20 ft/sec (0.08 - 6.09 m/sec)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials</th>
<th>Electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy®</td>
<td>PVDF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrode Cap</th>
<th>Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy®</td>
<td>Cast powder-coated aluminum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Assembly</th>
<th>O-Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IFS-1 Only)</td>
<td>(IFS-1 Only)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Assembly</th>
<th>O-Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronze (stainless optional) with bronze ball valve</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>Full Power</th>
<th>Low Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 to 25 VDC, 250 mA</td>
<td>12 to 25 VDC, 40 mA average with 250 mA peaks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure</th>
<th>Conductivity</th>
<th>Calibration Accuracy</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>Fluid</td>
<td>Minimum Conductivity</td>
<td>1% of full-scale</td>
<td>Square wave pulse, opto-isolated, 550 Hz @ 20 ft/sec</td>
</tr>
<tr>
<td>0 to 180 °F (17 to 72 °C)</td>
<td>52 to 200 °F (0 to 93 °C)</td>
<td>20 microamperes/cm</td>
<td>6 mA max, 30 Vdc forward flow standard; reverse flow optional</td>
<td></td>
</tr>
</tbody>
</table>

*Specifications subject to change

Hastelloy® is a trademark of Hanes International, Inc.
Piping. For best results, the IEFS sensor should be installed with at least ten diameters of straight pipe upstream and five downstream. Certain extreme situations such as partially-opened valves are particularly difficult and may require more straight diameters upstream (see page 6 for straight pipe recommendations).

DISTORTED FLOWS

Vertical flow in upward direction is the preferred installation orientation, since it improves low-flow performance and avoids problems with trapped air and sediment. Bottom, top, and vertical pipe installations are all acceptable if required by the piping layout.

Caution: These flow sensors are not recommended for installation downstream of a boiler feedwater pump where installation fault may expose the flow sensor to boiler pressure and temperature. Maximum recommended temperature is 200°F.

Caution: In chemical injection or fertigation applications, install chemical line downstream of the magmeter OR far enough upstream for complete mixing to occur before the meter reaches the meter. The magmeter will restabilize, however, with a steady flow of fluid of uniform conductivity. When unmixed chemical or fertilizer alternates with water passing through the meter, the rapid changes in conductivity may cause sudden spikes and drops in the meter’s reading, resulting in inaccurate measurement. The magmeter will restabilize, however, with a steady flow of fluid of uniform conductivity.

Immersion. The IEFS Series sensors are not designed for underwater operation. Even occasional immersion can cause damage. If occasional immersion is possible, such as when a vault floods, then the -IMM option, (immersion) is recommended.

Chemical Injection or Fertigation. When any magmeter, by any manufacturer, is used in a chemical injection application (including fertigation), the chemical line must be placed downstream of the magmeter OR far enough upstream for complete mixing to occur before the fluid reaches the meter. When unmixed chemical or fertilizer alternates with water passing through the meter, the rapid changes in conductivity may cause sudden spikes and drops in the meter’s reading, resulting in inaccurate measurement. The magmeter will restabilize, however, with a steady flow of fluid of uniform conductivity.

Vertical flow in upward direction is the preferred installation orientation, since it improves low-flow performance and avoids problems with trapped air and sediment. Bottom, top, and vertical pipe installations are all acceptable if required by the piping layout.

IEFS-XX INSTALLATION

Fitting Installation. IEFS-XX sensors come with a 1-1/2” male NPT pipe thread adapter fitting. Any fitting that provides the matching NPT female thread may be used. Installation procedure compensates for fitting height differences. Cut a minimum 1-3/4” hole in the pipe. If possible, measure the wall thickness and write it down for use in depth setting. Then install the threaded fitting (saddle, weldolet, etc.) on the pipe.

Meter Installation. Loosen the compression nut so that the adapter slides freely. Pull the meter fully upward and finger-tighten the compression nut. Using a thread sealant, install the adapter in the pipe fitting. Do not overtighten. Loosen the compression nut, and lower the meter to the appropriate depth setting (see diagram and instructions that follow). Be sure flow is in the direction of the arrow on the housing. Tighten compression nut fully.

IEFS-1 INSTALLATION

‘Hot-tap’ IEFS-1XX meters are designed so they can be installed and serviced without depressurizing the pipe.

Fitting Installation. The IEFS-1XX sensors have a 2” NPT thread for compatibility with the 2” isolation valve. Any fitting that provides matching NPT female thread may be used. The installation procedure compensates for differences in fitting height.

If initial installation is performed on an unpressurized pipe, cut a minimum 1-3/4” hole in the pipe. If possible, measure the wall thickness and write it down for use in depth setting. Then install the threaded fitting (saddle, weldolet, etc.) on the pipe.

If it is necessary to do the initial installation under pressure, any standard hot tap drilling machine with 2” NPT adapter, such as a Transmate or a Mueller, can be used. Ordinarily, it is not necessary to use an installation tool, due to the small diameter tube the meter can be installed by hand in exception for applications with higher pipe pressures.

Meter Installation. Remove the sensor unit from the valve assembly. Using a thread sealant, install the valve assembly on the pipe fitting. If the initial installation is a pressure (“hot-tap”), remove the 1-1/2” x 2” adapter bushing at the back of the valve. Thread the tapping machine on, open the valve, and tap using a minimum of 1-3/4” or maximum 1-7/8” cutter. After retracting the machine and closing the valve, reinstall the flow sensor. When the sensor is secure, open the valve and adjust depth setting (see diagram and instructions that follow). Be sure flow is in the direction of the arrow on the housing. Tighten locking collar and compression nut fully.
PROPER DEPTH SETTING

Depth Setting. It is important for accuracy that the sensor be inserted to the correct depth into the pipe.

1. In Table 1, find Dimension C for your sensor model and pipe size. Subtract wall thickness of your pipe (Table 2) to find Dimension D.

2. Measuring from the outside of the pipe to the joint in the housing, as shown in the diagram, adjust the sensor to Dimension D and hand-tighten compression nut.

3. Align the conduit housing with the centerline of the pipe, as shown. Be sure the arrow on the housing points in the direction of flow.

4. Check Dimension D one more time.

5. Tighten the compression nut fully.

Caution! Never attempt to remove a flow sensor when there is pressure in the pipe unless it is specifically designed for hot tap installation and removal. Loosen the compression nut slowly to release any trapped pressure. If fluid sprays out when removing the sensor, stop turning and depressurize the pipe. Failure to do so could result in the sensor being thrown from the pipe, resulting in damage or serious injury.
Caution: These flow sensors are not recommended for installation downstream of a boiler feedwater pump where installation fault may expose the flow sensor to boiler pressure and temperature. Maximum recommended temperature is 200°F.
General Electrical Guidelines:

- Whenever possible, avoid running control cables in the same conduit with or bundled with AC power.
- Using shielded cable, be sure to connect shield to ground at power supply end of the cable. Do not connect other end of shield.
- Avoid routing flow sensor cables in close proximity to a variable frequency drive.
- Recommended power and output wiring is shielded twisted pair 18 to 22 AWG control cable.
- Recommended voltage is 12 to 24 VDC. Note that unregulated power supplies can vary from nameplate voltage by a considerable amount, especially with AC line voltage fluctuation. Therefore 24V power supplies must be regulated.

See the Connections diagrams on the following pages for the appropriate terminals.

Power: A 12 to 24 Vdc power supply capable of at least 250 mA current output is needed.

Output: The standard output is pulses with flow in the forward direction (Reverse flow output is optional (-RFO)). Electrically it is an open collector opto isolated switch. The output is not internally powered.

Note: This output is limited to 6 mA at 30 Vdc maximum.

Grounding Guidelines:

For best results, use a good quality earth ground, such as metallic water piping or a driven ground, to ensure a good connection to earth ground and good noise suppression.

For Metallic Pipe: For optimum connection, clamp wire to the piping a short distance to one side of the flow sensor using an electrical grounding clamp. Connect the wire to the earth ground and to one of the housing screws, as shown in “Grounding Diagram” below.

For Non-Metallic Pipe: Connect a wire from the housing screws to a good earth ground, such as metallic water piping or a rod driven into the ground.

Series IEF & EFS2 meters are usually unaffected by moderate levels of electrical noise. In some applications performance may be improved by taking the following steps:

- Use shielded twisted pair cable (Belden 8723 or equivalent above ground or Alpha 35482 or equivalent burial).
- Clamp a ferrite bead (Steward 28A2029-OAO or equivalent) on meter signal/power wire within 3/4” of the meter strain relief (tape or tie wrap in place if necessary). See diagram below.
- IMPORTANT - Connect the cable shield ground wire to ground, ONLY at power supply end of cable.

Series IEF & EFS2 meters are usually unaffected by moderate levels of electrical noise. In some applications performance may be improved by taking the following steps:

- Use shielded twisted pair cable (Belden 8723 or equivalent above ground or Alpha 35482 or equivalent burial).
- Clamp a ferrite bead (Steward 28A2029-OAO or equivalent) on meter signal/power wire within 3/4” of the meter strain relief (tape or tie wrap in place if necessary). See diagram below.
- IMPORTANT - Connect the cable shield ground wire to ground, ONLY at power supply end of cable.

GROUNDING DIAGRAM

CONNECTIONS DIAGRAMS

COUNTER OR PLC DIGITAL INPUT

POWER

12 to 24 VDC

FORWARD OUTPUT

Max. 6 mA, 30 VDC

REVERSE OUTPUT

Max. 6 mA, 30 VDC

SERIES IEF5

SERIES BAT

FREQUENCY

See Dual RTI Diagram for an example of bidirectional connections.

POWER

24 VDC Power

FORWARD OUTPUT

4 to 20 mA

REVERSE OUTPUT

(-RFO only)

SERIES IEF5

SERIES BAT

4 to 20 mA OUTPUT

See Dual RTI Diagram for an example of bidirectional connections.
CONNECTIONS DIAGRAMS

SERIES RTI DISPLAY AND PROPORTIONAL FEED

See Dual RTI Diagram for an example of bidirectional connections.

SERIES RTI DISPLAY AND 4 to 20 mA OUTPUT

See Dual RTI Diagram for an example of bidirectional connections.

DUAL SERIES RTI DISPLAYS
(Example of Bidirectional Connection)

OPERATION & MAINTENANCE

Zero Adjustment. When the Series IEFS meter is powered up and there is no flow, there should be no output pulses (or, if connected to the RTI, flow rate should read “0”). If there are pulses, it may be necessary to adjust the flow meter under no-flow conditions after it has been installed. This should only be done if the indicated flow is low, near the lower cutoff.

Minimum Flow. As with any other flow sensor, there is a rate below which the IEFS Series sensor cannot read. Check the table below for the minimum flow rate detectable by the sensor for a given pipe size.

Presence of Flow Indication. To assist in troubleshooting, the “Status LED” has two blinking modes in normal operation. When there is no flow detectable by the meter (below minimum threshold), the LED blinks every 8.0 seconds. When there is detectable flow, the same indicator blinks every 3.0 seconds (Pulses are being output when indicator is blinking every 3 seconds).

Filtering. The software of the IEFS Series filters out electrical noise and averages sudden variations in the flow to smooth the output. It takes a matter of seconds for the flow sensor to get up to full output when it is powered up or when flow begins.

Electrode Coating. Grease or other adhering, non-conductive materials can stop flow detection if the electrodes become heavily coated. To clean the electrodes, remove the sensor from the pipe and gently scrub the electrodes (three silver bumps) on the reading face of the flow sensor. A mild soap (dishwashing liquid for example) can be used to aid the cleaning process.

FLOW RATES (IN GALLONS PER MINUTE)

<table>
<thead>
<tr>
<th>Feet Per Second</th>
<th>NOMINAL PIPE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3”</td>
</tr>
<tr>
<td>Min 0.28</td>
<td>6</td>
</tr>
<tr>
<td>Max 20.0</td>
<td>440</td>
</tr>
</tbody>
</table>
Calibration ("K-Factor"). In order to properly process pulses from the flow sensor, a number must be entered into the control to which the sensor is connected. This number, called the K-factor, is the number of pulses the sensor puts out per unit of fluid passing through the pipe. It is normally provided for Dwyer Instruments Inc. sensors in pulses per gallon, and is given on the chart "K-factors for Various Pipe Sizes" below. These numbers are based on extensive testing, which has shown close agreement between different IEFS sensors in the same installation. Typically, most K-factor errors can be attributed to installation variables, such as depth setting and fitting configuration.

IEFS K-factors (in Pulses/Gallon) for various pipe sizes

| Nominal Pipe Size | 3” 4” 6” 8” 10” 12” 14” 16” 18” 20” 24” 30” 36” |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| PVC/Steel Sch. 40 | 70.397 67.913 59.178 51.075 47.540 41.000 35.582 30.200 25.900 22.600 19.300 16.000 12.700 |
| Stainless Steel (40G) | 70.397 67.913 59.178 51.075 47.540 41.000 35.582 30.200 25.900 22.600 19.300 16.000 12.700 |
| Copper Tubing (Type K) | 70.371 67.900 59.165 51.070 47.530 41.000 35.572 30.200 25.890 22.580 19.280 15.980 12.680 |
| Copper Tubing (Type L) | 70.371 67.900 59.165 51.070 47.530 41.000 35.572 30.200 25.890 22.580 19.280 15.980 12.680 |
| Brass Pipe | 70.572 68.100 59.365 51.270 47.730 41.200 35.772 30.300 25.990 22.690 19.390 16.090 12.790 |

IEFS K-Factors for Various Pipe Sizes

| Problem | Probable Cause | Try...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No pulse output</td>
<td>Unit not grounded</td>
<td>Connect to earth ground</td>
</tr>
<tr>
<td></td>
<td>Below minimum flow cutoff</td>
<td>Check the Presence of Flow LED (see p. 12)</td>
</tr>
<tr>
<td></td>
<td>Flow reversed</td>
<td>Note flow direction arrow, reverse direction to meter</td>
</tr>
<tr>
<td></td>
<td>Output connections reversed</td>
<td>Change output connections</td>
</tr>
<tr>
<td></td>
<td>Pipe not full</td>
<td>Check plumbing</td>
</tr>
<tr>
<td></td>
<td>Excessive electrical noise</td>
<td>Check for proper electrical wiring</td>
</tr>
<tr>
<td></td>
<td>No power</td>
<td>Check for power across power input terminals</td>
</tr>
<tr>
<td></td>
<td>Power reversed</td>
<td>Reverse connections</td>
</tr>
<tr>
<td></td>
<td>Fluid conductivity <20 microSiemens/cm</td>
<td>Select another flow meter</td>
</tr>
<tr>
<td>Output pulses incorrect</td>
<td>Missing or incorrect ground wire</td>
<td>Check for proper ground</td>
</tr>
<tr>
<td></td>
<td>Incorrect depth setting</td>
<td>Check depth setting from Dimension "C" table (page 4)</td>
</tr>
<tr>
<td></td>
<td>Fluid conductivity <20 microSiemens/cm</td>
<td>Select another flow meter</td>
</tr>
<tr>
<td></td>
<td>Empty pipe</td>
<td>Check for full pipe or install meter in the vertical position</td>
</tr>
<tr>
<td></td>
<td>Not enough straight pipe</td>
<td>Check for air pockets or turbulence. Refer to installation, page 6</td>
</tr>
<tr>
<td></td>
<td>Excessive electrical noise</td>
<td>Check for proper electrical wiring</td>
</tr>
<tr>
<td>Jumpy reading</td>
<td>Rapidly changing conductivity (in chemical injection or fertigation applications)</td>
<td>Install chemical injection line downstream of magmeter (or far enough upstream to allow complete mixing of fluids before meter)</td>
</tr>
</tbody>
</table>
WARRANTY/RETURN

Refer to "Terms and Conditions of Sale" in our catalog or on our website. Contact customer service to receive a Returns Goods Authorization number before shipping your product back for repair. Be sure to include a brief description of the problem plus any relevant application notes.