The Series WE03 incorporates a full port 3-piece tri-clamp SS ball valve for great flow rates with minimal pressure drop. The valve features a blowout proof stem for added safety, reinforced PTFE seats and seals for longer life, and a 316 SS (ASTM CF8M) ball for better performance. Actuators are direct mounted creating a compact assembly for tight spaces. Limit switches are able to be mounted directly to the valves allowing for remote position indication.

The Series WE03 can be configured with either an electric or pneumatic actuator. Electric actuators are available in weatherproof or explosion-proof, a variety of supply voltages and two-position or modulating control. Two-position actuators use the supply voltage to drive the valve open or closed, while the modulating actuator accepts a 4 to 20 mA input for valve positioning. Actuators feature thermal overload protection and permanently lubricated gear train.

The pneumatic double acting actuator uses an air supply to drive the valve open and closed. The actuator has two supply ports with one driving the valve open and the other driving the valve closed. Spring return pneumatic actuators use the air supply to open the valve and internally loaded springs return the valve to the closed position. Also available is the SN solenoid valve to electrically switch the air supply pressure between the air supply ports for opening and closing the valve. Actuators are constructed of anodized and epoxy coated aluminum for years of corrosion free service.

SPECIFICATIONS

VALVE

- **Service:** Compatible liquids and gases.
- **Body:** 3-piece.
- **Line Sizes:** 1/2 to 2”.
- **End Connections:** Tri-clamp ends.
- **Pressure Limits:** 20” Hg to 1000 psi (-0.7 to 69 bar).
- **Wetted Materials:**
 - Body and ball: 316 SS (CF8M);
 - Stem: 316 SS;
 - Seat: RTFE/PTFE;
 - Seal, Washer, and Packing: PTFE.
- **Temperature Limits:** -20 to 392°F (-29 to 200°C).
- **Other Materials:**
 - O-ring: Fluoroelastomer;
 - Handle: 304 SS;
 - Washer: 301 SS;
 - Stem Nut, Locking Device, Gland Ring: 304 SS;
 - Handle Sleeve: PVC.

ACTUATORS

Pneumatic “DA” and “SR” Series

- **Type:** DA series is double acting and SR series is spring return (rack and pinion).
- **Normal Supply Pressure:**
 - DA: 40 to 115 psi (2.7 to 7.9 bar);
 - SR: 80 psi (5.5 bar).
- **Maximum Supply Pressure:** 120 psi (8.6 bar).
- **Air Connections:**
 - DA01: 1/8” female NPT;
 - DA02: 1/4” female NPT;
 - SR02 to SR04: 1/4” female NPT.
- **Housing Material:** Anodized aluminum body and epoxy coated aluminum end caps.
- **Temperature Limits:** -40 to 176°F (-40 to 80°C).
- **Accessory Mounting:** NAMUR standard.

Electric “TD” and “MD” Series

- **Power Requirements:** 110 VAC, 220 VAC, 24 VAC or 24 VDC (MD models not available in 24 VDC).
- **Power Consumption:** See page 8.
- **Cycle Time (per 90°):**
 - TD1: 4 s;
 - MD1: 10 s;
 - TD2 and MD2: 20 s.
- **Duty Rating:** 85%.
- **Enclosure Rating:** NEMA 4X (IP67).
- **Housing Material:** Powder coated aluminum.
- **Temperature Limits:** -22 to 140°F (-30 to 60°C).
- **Electrical Connection:** 1/2” female NPT.
- **Modulating Input:** 4 to 20 mA.
- **Standard Features:** Manual override, position indicator, and TD models come with two limit switches.

Electric “TI” and “MI” Series

- **Power Requirements:** 110 VAC, 220 VAC, 24 VAC or 24 VDC.
- **Power Consumption:** See page 8.
- **Cycle Time (per 90°):**
 - TI01 and MI01: 2.5 s;
 - TI02 and MI02: 5 s.
- **Duty Rating:**
 - Two-Position: TI01-TI02: 25%; MI01-MI02: 25%.
 - Modulating: MI01-MI02: 75%.
- **Enclosure Rating:** NEMA 7.
- **Housing Material:** Powder coated aluminum.
- **Temperature Limits:** -40 to 140°F (-40 to 60°C).
- **Electrical Connection:** 1/2” female NPT.
- **Modulating Input:** 4 to 20 mA.
- **Standard Features:** Position indicator and two limit switches.
Valve Bill of Materials

Pneumatic Model
- WE03-CHD00
- WE03-DHD00
- WE03-EHD00
- WE03-GHD00
- WE03-HHD00

Spring Return
- WE03-ESR03
- WE03-EDT01-A
- WE03-GDT01-A
- WE03-HDT02-A

Modulating Electric (110 VAC Model)
- WE03-CMD01-A
- WE03-DMD01-A
- WE03-EMD01-A
- WE03-GMD01-A

Position Electric (110 VAC Model)
- WE03-ESR03-A
- WE03-EDT01-A
- WE03-GDT01-A
- WE03-HDT02-A

Position Pneumatic Model
- WE03-CSR02
- WE03-DSR02
- WE03-ESR03
- WE03-HSR04

Valve Dimensional Drawing
PNEUMATIC ACTUATOR

Note: For optimal operation, pneumatic actuators should be run with a supply of clean, lubricated air.

Spring Return Actuator Operation

Air to PORT 2 (the right hand port) causes the actuator to turn counter clockwise (CCW). Loss of air to PORT 2 causes air to exhaust and the actuator turns clockwise (CW). This is the FAIL CLOSE operation.

Double Acting Actuators Operation

Air to PORT 2 (the right hand port) causes the actuator to turn counter clockwise (CCW). Air to PORT 1 (the left hand port) causes the actuator to turn clockwise (CW).

Pneumatic Actuator Maintenance

Routine maintenance of pneumatic actuator:

• Keep the air supply dry and clean
• Keep the actuator surface clean and free from dust
• Periodic checks should be done to make sure all fittings are tight
• Pneumatic actuators are supplied with lubrication to last the entire life span of the actuator under normal operating conditions.

The outer surface of the pneumatic actuator should be clean to avoid friction or corrosion. All fittings and connections should be tight to prevent leaks during operation. Check the bolts mounting the valve to the actuator to make sure they have not come loose during shipping or installation. Make sure the valve and actuator are not rubbing or jamming against other components during operation. The actuator should be inspected annually to make sure all fittings and bolts are tight and nothing has come loose during operation.

Disassembling Pneumatic Actuators

WARNING

Before beginning disassembly, ensure that the air supply to the actuator has been disconnected, all accessories have been removed, and that the actuator has been disassembled from the valve. 1. Loosen the end cap fasteners (22) with a wrench (size varies depending on actuator model). On the spring return actuator, alternate 3 to 5 turns on each fastener until the springs are completely decompressed. Use caution when removing the cap since the springs are under load until the fasteners are fully extended.

2. Remove the pinion snap ring (10) with a lock ring tool. The indicator (7) may now be removed.

3. Turn the pinion shaft (2) counter clockwise until the pistons are at the full end of travel. Disengage the pistons (11) from the pinion. (NOTE: Low pressure air--3 to 5 psi MAXIMUM--might be required to force the pistons completely from the body.) Note the position of the pistons before removing them from the actuator body.

4. Remove the pinion through the bottom of the actuator. The actuator is now completely disassembled.

Reassembling Pneumatic Actuators

WARNING

Be sure the actuator surfaces are free of debris and scratches before reassembling.

1. Apply a light film of grease to all O-rings and the pinion before replacing.

2. Put the pinion (2) back through the actuator with the flats of the pinion shaft replaced in their identical position in the end cap from which they were removed. (NOTE: In some circumstances, you might want to change the standard 80 pound spring set to fit your application and available air pressure.

3. Replace the actuator with a larger actuator.

PNEUMATIC ACTUATOR BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Material</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>Extruded Aluminum Alloy</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output Shaft</td>
<td>Stainless Steel</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O-ring</td>
<td>Fluorine Silicon Rubber</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Bearing</td>
<td>Nylon46</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Adjusting Cam</td>
<td>Stainless Steel</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Thrust Bearing</td>
<td>Nylon46</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Bearing</td>
<td>Nylon46</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>O-ring</td>
<td>Fluorine Silicon Rubber</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Bearing</td>
<td>Nylon46</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Gasket</td>
<td>Stainless Steel</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Damping Ring</td>
<td>Stainless Steel</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Position Indicator</td>
<td>PPPP+30%GF</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Screw</td>
<td>PPPP+30%GF</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Position Indicating Inserts</td>
<td>PPPP+30%GF</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Piston</td>
<td>Casting Aluminum Alloy</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Guide Ring</td>
<td>Nylon46</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>O-ring</td>
<td>Fluorine Silicon Rubber</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Guide Ring</td>
<td>Fluorine-Carbon Composite Material</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Spring Assembly</td>
<td>Alloy Spring Steel</td>
<td>19</td>
<td>5 to 12</td>
</tr>
<tr>
<td>O-ring</td>
<td>Fluorine Silicon Rubber</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Left End Cap</td>
<td>Casting Aluminum Alloy</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Right End Cap</td>
<td>Casting Aluminum Alloy</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>End Cap Bolt</td>
<td>Stainless Steel</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>O-ring</td>
<td>Fluorine Silicon Rubber</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Gasket</td>
<td>Stainless Steel</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Nut</td>
<td>Stainless Steel</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Adjusting Bolt</td>
<td>Stainless Steel</td>
<td>27</td>
<td>2</td>
</tr>
</tbody>
</table>
ELECTRIC ACTUATORS

Electric Installation
1. Operate valve manually and place in the open position.
2. Remove any mechanical stops the valve might have. (DO NOT REMOVE ANY PARTS NECESSARY FOR THE PROPER OPERATION OF THE VALVE, SUCH AS THE PACKING GLAND, PACKING NUT, ETC.)
3. Ensure that the actuator output shaft and valve stem are aligned properly. If they are not, operate the valve manually until they are correct.
4. Remove actuator cover.
5. Bring power to the actuator. CAUTION: Make sure power is OFF at the main box.
6. Wire the actuator per the diagram attached to the inside of the cover. Special actuators (those with positioner boards, etc.) will have diagrams enclosed inside the cover.
7. Securely tighten bolts used to mount the actuator to a mounting bracket or directly to the valve mounting pad if it is ISO5211 compliant.
8. Cycle the unit several times and check the open and closed positions of the valve. Cams are pre-adjusted at the factory; due to the variety of valve designs and types however, slight adjustments might be required.
9. Replace cover and tighten screws.

To Set The Open Position
1. Cycle the valve to the open position by applying power to terminals. The top cam and switch control this position. In the open position, the set screw in the top cam will be accessible.
2. If the valve is not open completely:
 A. Slightly loosen the set screw on the top cam.
 B. Rotate the cam clockwise (CW) by hand until the switch makes contact. Contact is made when a slight click can be heard. By making incremental CW movements of the bottom cam, the valve can be positioned precisely in the desired position.
 C. When the top cam is set, tighten the set screw securely.
3. If the valve opens too far:
 A. Apply power to terminals. This will begin to rotate valve CW. When valve is fully open and in the exact position desired, remove power from actuator.
 B. Loosen the set screw in the top cam.
 C. Rotate the top cam counterclockwise (CCW) until the switch arm drops off the round portion of the cam onto the flat section. A slight click can be heard as the switch changes state.
 D. Continue applying power to terminals until valve is in the desired position.

To Set The Closed Position
1. Apply power to terminals to move the valve toward the closed position. The bottom cam and switch control the closed position. In the closed position, the set screw in the bottom cam will be accessible.
2. If the valve is not closed completely:
 A. Slightly loosen the set screw on the bottom cam.
 B. Rotate the cam counter-clockwise (CCW) by hand until the switch makes contact. Contact is made when a slight click can be heard. By making incremental CCW movements of the bottom cam, the valve can be positioned precisely in the desired position.
 C. When the top cam is set, tighten the set screw securely.
3. If the valve closes too far:
 A. Apply power to terminals. This will begin to rotate valve CCW. When valve is fully closed and in the exact position desired, remove power from actuator.
 B. Loosen the set screw in the top cam.
 C. Rotate the top cam clockwise (CW) until the switch arm drops off the round portion of the cam onto the flat section. A slight click can be heard as the switch is no longer making contact with the round part of the cam.
 D. Continue applying power to terminals until valve is in the desired position.
Wiring Diagrams for
TI01-TI10: 120 VAC, TI01-TI10: 220 VAC, TI01-TI10: 24 VAC

FOOTNOTES:

POWER TO TERMINALS ONE & TWO OPENS THE VALVE (CCW ROTATION)
POWER TO TERMINALS ONE & THREE CLOSES THE VALVE (CW ROTATION)
TERMINALS 4 & 5 ARE FOR LIGHT INDICATION
WIRING DIAGRAM ILLUSTRATES THE ACTUATOR IN THE OPEN POSITION

Wiring Diagrams for
TI01-TI10: 12VDC, TI01-TI10: 24 VDC

ACTUATOR SHOWN IN OPEN POSITION

SWITCH #1 OPEN SWITCH
SWITCH #2 CLOSE SWITCH

OPERATION:
POWER TO 1 & 2 FOR CCW ROTATION
POWER TO 3 & 4 FOR CW ROTATION
TERMINALS 5 & 6 FOR FIELD LIGHT INDICATION CONNECTION

REVERSING RELAY SUPPLIED BY CUSTOMER
Wiring Diagrams for MI01-MI10: 120 VAC, MI01-MI10: 220 VAC, MI01-MI10: 24 VAC

8 7 6 5 4 3 2 1 J1 J2

4-20mA POSITIONER

PSC MOTOR

CAPACITOR

BRAKE

OPTIONAL

SW. 1, CLOSE

SW. 2, OPEN

1K OHM FEEDBACK POTENTIOMETER

NOTE:

ACTUATOR SHIPPED IN OPEN POSITION. 20mA REPRESENTS OPEN POSITION. DO NOT ADJUST FEEDBACK POTENTIOMETER OR LIMIT SWITCHES THEY ARE FACTORY SET AND DO NOT REQUIRE CALIBRATION. TO CALIBRATE THE OPEN AND CLOSE POSITION USE THE ZERO (4mA) AND SPAN (20mA) TRIM POTENTIOMETERS.

TO CALIBRATE OPERATE ACTUATOR TO CLOSE POSITION AND ADJUST WITH ZERO TRIM POT THEN OPERATE TO OPEN POSITION AND SET USING SPAN TRIM POT. NO FURTHER CALIBRATION IS NECESSARY.

NOTE:

ACTUATOR SHIPPED IN OPEN POSITION, 20mA REPRESENTS OPEN POSITION. DO NOT ADJUST FEEDBACK POTENTIOMETER OR LIMIT SWITCHES THEY ARE FACTORY SET AND DO NOT REQUIRE CALIBRATION. TO CALIBRATE THE OPEN AND CLOSE POSITION USE THE ZERO (4mA) AND SPAN (20mA) TRIM POTENTIOMETERS.

TO CALIBRATE OPERATE ACTUATOR TO CLOSE POSITION AND ADJUST WITH ZERO TRIM POT THEN OPERATE TO OPEN POSITION AND SET USING SPAN TRIM POT. NO FURTHER CALIBRATION IS NECESSARY.
To speed up installation of the control wires to the ACT-MDXX modulating actuator, it is recommended to remove the control module from the actuator. The control module can be removed by removing the two mounting screws on the left and right of the control module. Install the control wires to the correct terminal points and then reinstall the control module.

Electric Actuator Maintenance
Once the actuator has been properly installed, it requires no maintenance. The gear train has been lubricated and in most cases will never be opened.

Duty Cycle Definition
“Duty Cycle” means the starting frequency.

Formula: Running Time = (Running Time + Rest Time) x 100% = duty cycle
Rest Time = Running Time x (1 - duty cycle) / duty cycle

For example: The running time is 15 seconds
30% duty cycle: 15 x [(1 - 30%) / 30%) = 35 → The rest time will be 35 seconds
75% duty cycle: 15 x [(1 - 75%) / 75%) = 5 → The rest time will be 5 seconds

If the duty cycle is higher, the rest time will be shortened. It means the starting frequency will be higher.

Thermal Overload
All actuators are equipped with thermal overload protection to guard the motor against damage due to overheating.

Mechanical Overload
All actuators are designed to withstand stall conditions. It is not recommended to subject the unit to repeated stall conditions.

Explosion-Proof Electric Actuators

1. DO NOT under any circumstances remove the cover of the actuator while in a hazardous location. Removal of the cover while in a hazardous location could cause ignition of hazardous atmospheres.
2. DO NOT under any circumstances use an explosion-proof electric actuator in a hazardous location that does not meet the specifications for which the actuator was designed.
3. Always verify that all electrical circuits are de-energized before opening the actuator.
4. Always mount and cycle test the actuator on the valve in a non-hazardous location.
5. When removing the cover, care must be taken not to scratch, scar or deform the flame path of the cover and base of the actuator, since this will negate the NEMA rating of the enclosure.
6. When replacing the cover, take care that the gasket is in place to assure proper clearance after the cover is secured.
7. All electrical connections must be in accordance with the specifications for which the unit is being used.
8. Should the unit ever require maintenance, remove from the hazardous location before attempting to work on the unit.

If the actuator is in a critical application, it is advisable to have a standby unit in stock.
Electric Actuators Performance Rating

<table>
<thead>
<tr>
<th>Voltage</th>
<th>TD01</th>
<th>MD01</th>
<th>TD02 and MD02</th>
<th>TD03 and MD03</th>
<th>TD04 and MD04</th>
<th>TD05 and MD05</th>
<th>TD06 and MD06</th>
<th>TI01 and MI01</th>
<th>TI02 and MI02</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 VAC</td>
<td>110 VAC</td>
<td>220 VAC</td>
<td>24 VAC</td>
</tr>
<tr>
<td>220 VAC</td>
<td>10 s</td>
</tr>
<tr>
<td>24 VAC</td>
<td>20 s</td>
</tr>
<tr>
<td>24 VDC</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>0.24 A</td>
<td>0.16 A</td>
<td>0.28 A</td>
<td>1.28 A</td>
<td>0.16 A</td>
<td>0.28 A</td>
<td>1.28 A</td>
<td>0.16 A</td>
<td>0.28 A</td>
<td>1.28 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage</th>
<th>MD01 Duty Cycle (Modulating)</th>
<th>MD01 Duty Cycle (Modulating)</th>
<th>MD01 Duty Cycle (Modulating)</th>
<th>MD01 Duty Cycle (Modulating)</th>
<th>AMP Draw</th>
<th>Torque</th>
<th>Voltage</th>
<th>Cycle Time</th>
<th>Duty Cycle (Two-Position)</th>
<th>Duty Cycle (Modulating)</th>
<th>AMP Draw</th>
<th>Torque</th>
<th>Voltage</th>
<th>Cycle Time</th>
<th>Duty Cycle (Two-Position)</th>
<th>Duty Cycle (Modulating)</th>
<th>AMP Draw</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 VAC</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>220 VAC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>220 VAC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>24 VAC</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>24 VAC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>24 VAC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>24 VDC</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>85%</td>
<td>24 VDC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>24 VDC</td>
<td>15 s</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>0.16 A</td>
<td>0.38 A</td>
</tr>
<tr>
<td>200 in-lb</td>
</tr>
</tbody>
</table>

MAINTENANCE/REPAIR

Upon final installation of the Series WE, only routine maintenance is required. The Series WE is not field serviceable and should be returned if repair is needed. Field repair should not be attempted and may void warranty.

WARRANTY/RETURN

Refer to “Terms and Conditions of Sale” in our catalog and on our website. Contact customer service to receive a Return Goods Authorization number before shipping the product back for repair. Be sure to include a brief description of the problem plus any additional application notes.