The Series WE07 2-Piece Flanged Stainless Steel V-Ball Valve incorporates a V-port ball valve for impressive flow rates with minimal pressure drop. Quarter turn control ball valves are compact, lighter weight and much less expensive than comparable sized globe valves and segmented control valves. They also offer bubble tight shut off with zero leakage and can withstand high pressure drops. The 60° and 90° balls offer an equal percentage flow characteristic. W. E. Anderson's V-port ball valves have been designed to offer maximum flow characteristics that are substantially higher than comparably sized globe valves. The natural flow pattern of ball valves increases flow rates and in many applications valves smaller than pipeline size can be used. Actuators are direct mounted creating a compact assembly for tight spaces. Limit switches can be mounted directly to the valves allowing for remote position indication.

The Series WE07 can be configured with an electric or pneumatic actuator. Electric actuators are available in weatherproof or explosion-proof, a variety of supply voltages and two-position modulating control.

Two-position actuators use the supply voltage to drive the valve open or close, while the modulating actuator accepts a 4-20 mA input for valve positioning. Actuators feature thermal overload protection and a permanently lubricated gear train. The pneumatic double acting actuator uses an air supply to drive the valve open and closed. The actuator has two supply ports with one driving the valve open and the other driving the valve closed. Spring return pneumatic actuators use the air supply to open the valve and internally loaded springs return the valve to the closed position. Also available is the SV3 solenoid valve to electrically switch the air supply pressure between the air supply ports for opening and closing the valve. Actuators are constructed of anodized and epoxy coated aluminum for years of corrosion free service.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WE07-DHD00-T</th>
<th>WE07-DDA01-T-NN09</th>
<th>WE07-CTI01-T-A</th>
<th>WE07-DDA01-T-AA03</th>
<th>WE07-DDD01-T-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service:</td>
<td>Compatible liquids and gases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body:</td>
<td>2-Piece.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Sizes:</td>
<td>1/2 to 3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Connections:</td>
<td>150# ANSI flange.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Limits:</td>
<td>20” Hg to 275 psi (-0.7 to 19 bar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted Materials:</td>
<td>Body and ball: 316 SS (CF8M); Stem: 316 SS; Seat: RTFE/PTFE; Seal, Washer, and Packing: PTFE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Limits:</td>
<td>-20 to 392°F (-29 to 200°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Materials:</td>
<td>O-ring: Fluoroelastomer; Handle: 304 SS; Washer: 301 SS; Stem Nut, Locking Device, Gland Ring: 304 SS; Handle Sleeve: PVC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTUATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic “DA” and “SR” Series</td>
<td>Type: DA series is double acting and SR series is spring return (rack and pinion).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Supply Pressure:</td>
<td>DA: 40 to 115 psi (2.7 to 7.9 bar); SR: 80 psi (5.5 bar).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Supply Pressure:</td>
<td>120 psi (8.6 bar).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Connections:</td>
<td>DA01: 1/8” female NPT; DA02 to DA04: 1/4” female NPT; SR02 to SR06: 1/4” female NPT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing Material:</td>
<td>Anodized aluminum body and epoxy coated aluminum end caps.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Limits:</td>
<td>-40 to 176°F (-40 to 80°C).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessory Mounting:</td>
<td>NAMUR standard.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electric “TD” and “MD” Series
- Power Requirements: 110 VAC, 220 VAC, 24 VAC or 24 VDC (MD models not available in 24 VDC).
- Power Consumption: See page 10.
- Cycle Time (per 90°): TD01: 4 s; MD01: 10 s; TD02 and MD02: 20 s; TD03 and MD03: 30 s.
- Duty Rating: 85%.
- Enclosure Rating: NEMA 4X (IP67).
- Temperature Limits: -22 to 140°F (-30 to 60°C).
- Electrical Connection: 1/2” female NPT.
- Modulating Input: 4-20 mA.
- Standard Features: Manual override, position indicator, and TD models come with two limit switches.

Electric “TI” and “MI” Series
- Power Requirements: 110 VAC, 220 VAC, 24 VAC or 24 VDC.
- Power Consumption: See page 10.
- Cycle Time (per 90°): See page 10.
- Enclosure Rating: NEMA 7, designed to meet hazardous locations: Class I, Group C & D; Class II, Group E, F & G; Division I & II.
- Temperature Limits: -40 to 140°F (-40 to 60°C).
- Electrical Connection: 1/2” female NPT.
- Modulating Input: 4-20 mA.
- Standard Features: Position indicator and two limit switches.
Cv VALVE TABLE

<table>
<thead>
<tr>
<th>Size</th>
<th>Ball Angle</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>60°</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.8</td>
<td>1.6</td>
<td>2.7</td>
<td>4.7</td>
<td>6.7</td>
<td>7.9</td>
</tr>
<tr>
<td>1/2"</td>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.6</td>
<td>1</td>
<td>1.8</td>
<td>3.5</td>
<td>5.4</td>
<td>7.1</td>
<td>9.1</td>
</tr>
<tr>
<td>3/4"</td>
<td>60°</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
<td>2.4</td>
<td>4.2</td>
<td>6.7</td>
<td>9.9</td>
<td>13.6</td>
</tr>
<tr>
<td>3/4"</td>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.7</td>
<td>2</td>
<td>3.3</td>
<td>4.8</td>
<td>8.1</td>
<td>12.3</td>
<td>14.2</td>
</tr>
<tr>
<td>1"</td>
<td>60°</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>2.1</td>
<td>4.1</td>
<td>7</td>
<td>11.3</td>
<td>16.8</td>
<td>22.3</td>
</tr>
<tr>
<td>1"</td>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>1.8</td>
<td>3.8</td>
<td>8.4</td>
<td>12.5</td>
<td>15.7</td>
<td>23.1</td>
<td>29.1</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>60°</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>1.6</td>
<td>2.4</td>
<td>5.3</td>
<td>9.2</td>
<td>14.9</td>
<td>21.9</td>
<td>31.5</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>2.4</td>
<td>5.7</td>
<td>11.1</td>
<td>17.5</td>
<td>26.2</td>
<td>35.1</td>
<td>53.7</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>60°</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>2.6</td>
<td>5.6</td>
<td>10.8</td>
<td>19</td>
<td>27.8</td>
<td>37.8</td>
<td>46.2</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>90°</td>
<td>0</td>
<td>0.1</td>
<td>0.9</td>
<td>3.4</td>
<td>8.7</td>
<td>15.4</td>
<td>30.9</td>
<td>40.5</td>
<td>62.1</td>
<td>75.5</td>
</tr>
<tr>
<td>2"</td>
<td>60°</td>
<td>0</td>
<td>0.3</td>
<td>1.4</td>
<td>4.5</td>
<td>9.3</td>
<td>17</td>
<td>29.1</td>
<td>48.2</td>
<td>77.7</td>
<td>104.7</td>
</tr>
<tr>
<td>2"</td>
<td>90°</td>
<td>0</td>
<td>0.3</td>
<td>2</td>
<td>6.1</td>
<td>12.3</td>
<td>23.7</td>
<td>39.1</td>
<td>66.2</td>
<td>101.2</td>
<td>138.4</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>60°</td>
<td>0</td>
<td>0.3</td>
<td>1.6</td>
<td>6.7</td>
<td>15.8</td>
<td>28.8</td>
<td>49.2</td>
<td>76.8</td>
<td>116.9</td>
<td>147.5</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>90°</td>
<td>0</td>
<td>0.4</td>
<td>1.7</td>
<td>8.8</td>
<td>22.6</td>
<td>40.4</td>
<td>72.5</td>
<td>106.1</td>
<td>168.6</td>
<td>220.3</td>
</tr>
<tr>
<td>3"</td>
<td>60°</td>
<td>0</td>
<td>0.7</td>
<td>1.7</td>
<td>7.7</td>
<td>19.3</td>
<td>37.7</td>
<td>62.8</td>
<td>98.9</td>
<td>153.3</td>
<td>209.1</td>
</tr>
<tr>
<td>3"</td>
<td>90°</td>
<td>0</td>
<td>1.1</td>
<td>3.5</td>
<td>10.6</td>
<td>31.2</td>
<td>57.8</td>
<td>89.4</td>
<td>136.7</td>
<td>204.5</td>
<td>308.3</td>
</tr>
<tr>
<td>4"</td>
<td>60°</td>
<td>0</td>
<td>1.7</td>
<td>7.9</td>
<td>18.7</td>
<td>42.9</td>
<td>72.3</td>
<td>119.7</td>
<td>188.4</td>
<td>284.3</td>
<td>381.4</td>
</tr>
<tr>
<td>4"</td>
<td>90°</td>
<td>0</td>
<td>2</td>
<td>8.3</td>
<td>24.6</td>
<td>70.7</td>
<td>145.5</td>
<td>202.4</td>
<td>305</td>
<td>484.7</td>
<td>671.5</td>
</tr>
</tbody>
</table>

Cv Valve Charts

- **90° V-PORT – Cv**
- **60° V-PORT – Cv**

Pressure/Temperature Rating Chart

![Pressure/Temperature Rating Chart](image-url)
PNEUMATIC ACTUATOR

Note: For optimal operation, pneumatic actuators should be run with a supply of clean, lubricated air.

Spring Return Actuator Operation

WARNING When working on the Actuator/Valve assembly, disconnect the air or power supply to the actuator. Spring return actuators/valves may change position if power fails or is removed. Never insert any object or body part into the valve body. Severe injury may occur.

Air to PORT 2 (the left hand port) causes the actuator to turn counterclockwise (CCW). Loss of air to PORT 2 causes air to exhaust and the actuator turns clockwise (CW). This is the FAIL CLOSE operation.

Double Acting Actuators Operation

Air to PORT 2 (the left hand port) causes the actuator to turn counterclockwise (CCW). Air to PORT 1 (the right hand port) causes the actuator to turn clockwise (CW).

Pneumatic Actuator Maintenance

Routine maintenance of pneumatic actuator:

- Keep the air supply dry and clean
- Keep the actuator surface clean and free from dust
- Periodic checks should be done to make sure all fittings are tight
- Pneumatic actuators are supplied with lubrication to last the entire life span of the actuator under normal operating conditions.

The outer surface of the pneumatic actuator should be clean to avoid friction or corrosion. All fittings and connections should be tight to prevent leaks during operation. Check the bolts mounting the valve to the actuator to make sure they have not come loose during shipping or installation. Make sure the valve and actuator are not rubbing or jamming against other components during operation. The actuator should be inspected annually to make sure all fittings and bolts are tight and nothing has come loose during operation.

Disassembling Pneumatic Actuators

WARNING Before beginning disassembly, ensure that the air supply to the actuator has been disconnected, all accessories have been removed, and that the actuator has been disassembled from the valve.

1. Loosen the end cap fasteners (23) with a wrench (size varies depending on actuator model). On the spring return actuator, alternate 3 to 5 turns on each fastener until the springs are completely decompressed. Use caution when removing the cap since the springs are under load until the fasteners are fully extended.
2. Remove the pinion snap ring (13) with a lock ring tool. The indicator (12) may now be removed.
3. Turn the pinion shaft (2) counter clockwise until the pistons are at the full end of travel. Disengage the pistons (15) from the pinion. (Note: Low pressure air—3 to 5 psi MAXIMUM—might be required to force the pistons completely from the body.) Note the position of the pistons before removing them from the actuator body.
4. Remove the pinion through the bottom of the actuator. The actuator is now completely disassembled.

Reassembling Pneumatic Actuators

WARNING Be sure the actuator surfaces are free of debris and scratches before reassembling.

1. Apply a light film of grease to all O-rings and the pinion before replacing.
2. Put the pinion (2) back through the actuator with the flats of the pinion shaft running parallel with the body.
3. When reassembling the actuator, make sure that the piston racks are square to the actuator body and returned to their original orientation. (Note: The normal operation of all spring return pneumatic actuators is FAIL CLOSED. To change the orientation to FAIL OPEN, rotate the racks 180º to create a reverse operation.
4. When replacing springs in a spring return actuator, ensure that the springs are replaced in their identical position in the end cap from which they were removed. (Note: In some circumstances, you might want to change the standard 80 pound spring set to fit your application and available air pressure.
5. Seal the end caps with a petroleum lubricant and bolt to actuator body.
6. Check the seal of the actuator by covering seal areas (pinion, end caps) with soapy water and using low pressure air to the actuator to ensure that no bubbles are produced.

<table>
<thead>
<tr>
<th>Failures</th>
<th>Inspection Items</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic actuator won’t operate</td>
<td>1. Check the solenoid valve. Is the coil burnt out or is the solenoid pool? 2. The actuator will not move because of debris in the gears. 3. The pneumatic line to the actuator is distorted or smashed. 4. The pneumatic line is frozen because of low temperatures and moisture.</td>
<td>1. Replace the solenoid valve coil or remove debris. 2. Disassemble the actuator, clean the debris and reassemble the actuator. 3. Replace pneumatic line to the actuator. 4. Warm the pneumatic lines and remove moisture from supply lines.</td>
</tr>
<tr>
<td>Pneumatic actuator runs slowly</td>
<td>1. The air supply pressure is insufficient. 2. Are other pneumatic devices consuming the air required for the actuator to operate? 3. The pneumatic actuator is undersized for the application.</td>
<td>1. Increase the air supply pressure and look for leaks in the supply pressure pipeline. 2. Increase the air supply or reduce the number of devices operating at the same time. 3. Replace the actuator with a larger actuator.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Quantity</td>
<td>Part Name</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Cylinder</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Output Shaft</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Bearing</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Adjusting Cam</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Thrust Bearing</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Bearing</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Bearing</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Gasket</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Damping Ring</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Position Indicator</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Screw</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Position Indicating Inserts</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Piston</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>Guide Ring</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>Guide Ring</td>
</tr>
<tr>
<td>19</td>
<td>5 to 12</td>
<td>Spring Assembly</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Left End Cap</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Right End Cap</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>End Cap Bolt</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>Gasket</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>Nut</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Adjusting Bolt</td>
</tr>
</tbody>
</table>
To Set The Open Position
1. Cycle the valve to the open position by applying power to terminals. The top cam and switch control this position. In the open position, the set screw in the top cam will be accessible.

2. If the valve is not open completely:
 A. Slightly loosen the set screw on the top cam.
 B. Rotate the cam clockwise (CW) by hand until the switch makes contact.
 C. When the top cam is set, tighten the set screw securely.

3. If the valve opens too far:
 A. Apply power to terminals. This will begin to rotate valve CW. When valve is fully open and in the exact position desired, remove power from actuator.
 B. Loosen the set screw in the top cam.
 C. Rotate the top cam counterclockwise (CCW) until the switch arm drops off the round portion of the cam onto the flat section. A slight click can be heard as the switch changes state.
 D. Continue applying power to terminals until valve is in the desired position.

To Set The Closed Position
1. Apply power to terminals to move the valve toward the closed position. The bottom cam and switch control the closed position. In the closed position, the set screw in the bottom cam will be accessible.

2. If the valve is not closed completely:
 A. Slightly loosen the set screw on the bottom cam.
 B. Rotate the cam counterclockwise (CCW) by hand until the switch makes contact. Contact is made when a slight click can be heard. By making incremental CCW movements of the bottom cam, the valve can be positioned precisely in the desired position.
 C. When the top cam is set, tighten the set screw securely.

3. If the valve closes too far:
 A. Apply power to terminals. This will begin to rotate valve CCW. When valve is fully closed and in the exact position desired, remove power from actuator.
 B. Loosen the set screw in the top cam.
 C. Rotate the top cam clockwise (CW) until the switch arm drops off the round portion of the cam onto the flat section. A slight click can be heard as the switch changes state.
 D. Continue applying power to terminals until valve is in the desired position.

ELECTRIC ACTUATORS
Electric Installation
1. Operate valve manually and place in the open position.
2. Remove any mechanical stops the valve might have. (DO NOT REMOVE ANY PARTS NECESSARY FOR THE PROPER OPERATION OF THE VALVE, SUCH AS THE PACKING GLAND, PACKING NUT, ETC.)
3. Ensure that the actuator output shaft and valve stem are aligned properly. If they are not, operate the valve manually until they are correct.
4. Remove actuator cover.
5. Bring power to the actuator. CAUTION: Make sure power is OFF at the main box.
6. Wire the actuator per the diagram attached to the inside of the cover. Special actuators (those with positioner boards, etc.) will have diagrams enclosed inside the cover.
7. Securely tighten bolts used to mount the actuator to a mounting bracket or directly to the valve mounting pad if it is ISO5211 compliant.
8. Cycle the unit several times and check the open and closed positions of the valve. Cams are pre-adjusted at the factory; due to the variety of valve designs and types however, slight adjustments might be required.
9. Replace cover and tighten screws.

MODEL CHART - DOUBLE ACTING ACTUATOR TORQUE

<table>
<thead>
<tr>
<th>Model</th>
<th>DA Double-Action Output Torque (lb-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 psi</td>
</tr>
<tr>
<td>ACT-DA01</td>
<td>49</td>
</tr>
<tr>
<td>ACT-DA02</td>
<td>104</td>
</tr>
<tr>
<td>ACT-DA03</td>
<td>182</td>
</tr>
<tr>
<td>ACT-DA04</td>
<td>302</td>
</tr>
<tr>
<td>ACT-DA05</td>
<td>396</td>
</tr>
<tr>
<td>ACT-DA06</td>
<td>567</td>
</tr>
<tr>
<td>ACT-DA07</td>
<td>845</td>
</tr>
<tr>
<td>ACT-DA08</td>
<td>1497</td>
</tr>
<tr>
<td>ACT-DA09</td>
<td>2253</td>
</tr>
</tbody>
</table>

MODEL CHART - SPRING RETURN ACTUATOR TORQUE

<table>
<thead>
<tr>
<th>Model</th>
<th>SR Single Acting Pneumatic Actuator (lb-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Pressure</td>
</tr>
<tr>
<td>ACT-SR02</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR03</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR04</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR05</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR06</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR07</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR08</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR09</td>
<td>10</td>
</tr>
<tr>
<td>ACT-SR10</td>
<td>10</td>
</tr>
</tbody>
</table>
Wiring Diagrams for
TI01-A to TI05-A: 110 VAC, TI01-B to TI05-B: 220 VAC, TI01-C to TI05-C: 24 VAC

NOTES:
POWER TO TERMINALS ONE & TWO OPENS THE VALVE (CCW ROTATION)
POWER TO TERMINALS ONE & THREE CLOSES THE VALVE (CW ROTATION)
TERMINALS 4 & 5 ARE FOR LIGHT INDICATION
WIRING DIAGRAM ILLUSTRATES THE ACTUATOR IN THE OPEN POSITION

FIELD WIRING

LIGHTS FOR REMOTE POSITION INDICATION

OPTIONAL EQUIPMENT
FIELD WIRING

Wiring Diagrams for
TI01-D to TI05-D: 24 VDC

SW. #1
SW. #2

SWITCH #1 OPEN SWITCH
SWITCH #2 CLOSE SWITCH

OPERATION:
POWER TO 1 & 2 FOR CCW ROTATION
POWER TO 3 & 4 FOR CW ROTATION
TERMINALS 5 & 6 FOR FIELD LIGHT INDICATION CONNECTION

ACTUATOR SHOWN IN OPEN POSITION

REVERSING RELAY SUPPLIED BY CUSTOMER
Wiring Diagrams for
MI01-A to MI05-A: 110 VAC, MI01-B to MI05-B: 220 VAC, MI01-C to MI05-C: 24 VAC

1PH-60Hz
POWER SUPPLY
HOT
N
FIELD WIRING
4-20mA CONTROL SIGNAL
0-10VDC or 0-5VDC CONTROL SIGNAL
REMOVE JP2, JP3 & JP4

NOTE:
ACTUATOR SHIPPED IN OPEN POSITION. 20mA REPRESENTS OPEN POSITION. DO NOT ADJUST FEEDBACK POTENTIOMETER OR LIMIT SWITCHES. THEY ARE FACTORY SET AND DO NOT REQUIRE CALIBRATION. TO CALIBRATE THE OPEN AND CLOSE POSITION, USE THE ZERO (4mA) AND SPAN (20mA) TRIM POTENTIOMETERS.

TO CALIBRATE, OPERATE ACTUATOR TO CLOSE POSITION AND ADJUST WITH ZERO TRIM POT THEN OPERATE TO OPEN POSITION AND SET USING SPAN TRIM POT. NO FURTHER CALIBRATION IS NECESSARY.

WIRING DIAGRAM FOR 1Ph/60Hz ELECTRIC ACTUATOR WITH 4-20mA, 0-5Vdc OR 0-10Vdc CONTROL.

Wiring Diagrams for
MI01-D to MI05-D: 24 VDC

NOTE:
ACTUATOR SHIPPED IN OPEN POSITION. 20mA REPRESENTS OPEN POSITION. DO NOT ADJUST FEEDBACK POTENTIOMETER OR LIMIT SWITCHES. THEY ARE FACTORY SET AND DO NOT REQUIRE CALIBRATION. TO CALIBRATE THE OPEN AND CLOSE POSITION, USE THE ZERO (4mA) AND SPAN (20mA) TRIM POTENTIOMETERS.

TO CALIBRATE, OPERATE ACTUATOR TO CLOSE POSITION AND ADJUST WITH ZERO TRIM POT THEN OPERATE TO OPEN POSITION AND SET USING SPAN TRIM POT. NO FURTHER CALIBRATION IS NECESSARY.

WIRING DIAGRAM FOR 1Ph/60Hz ELECTRIC ACTUATOR WITH 4-20mA, 0-5Vdc OR 0-10Vdc CONTROL.
Wiring Diagrams for
TD01-A to TD03-A: 110 VAC, TD01-B to TD03-B: 220 VAC,
TD01-C to TD03-C: 24 VAC

Wiring Diagrams for
TD01-D to TD03-D: 24 VDC

Wiring Diagrams for
MD01-A to MD03-A: 110 VAC, MD01-B to MD03-B: 220 VAC,
MD01-C to MD03-C: 24 VAC

Note: To speed up installation of the control wires to the ACT-MDXX modulating actuator, it is recommended to remove the control module from the actuator. The control module can be removed by removing the two mounting screws on the left and right of the control module. Install the control wires to the correct terminal points and then reinstall the control module.

Electric Actuator Maintenance
Once the actuator has been properly installed, it requires no maintenance. The gear train has been lubricated and in most cases will never be opened.

Duty Cycle Definition
"Duty Cycle" means the starting frequency.
Formula: Running Time + (Running Time + Rest Time) x 100% = duty cycle
-> Rest Time = Running Time x (1 - duty cycle) / duty cycle

For example: The running time is 15 seconds
30% duty cycle 15 x [(1 - 30%) / 30%] = 35 -> The rest time will be 35 seconds
75% duty cycle 15 x [(1 - 75%) / 75%] = 5 -> The rest time will be 5 seconds

If the duty cycle is higher, the rest time will be shortened, which means the starting frequency will be higher.

Thermal Overload
All actuators are equipped with thermal overload protection to guard the motor against damage due to overheating.

Mechanical Overload
All actuators are designed to withstand stall conditions. It is not recommended to subject the unit to repeated stall conditions.

Explosion-Proof Electric Actuators

WARNING
1. DO NOT under any circumstances remove the cover of the actuator while in a hazardous location. Removal of the cover while in a hazardous location could cause ignition of hazardous atmospheres.
2. DO NOT under any circumstances use an explosion-proof electric actuator in a hazardous location that does not meet the specifications for which the actuator was designed.
3. Always verify that all electrical circuits are de-energized before opening the actuator.
4. Always mount and cycle test the actuator on the valve in a non-hazardous location.
5. When removing the cover, care must be taken not to scratch, scar or deform the flame path of the cover and base of the actuator, since this will negate the NEMA rating of the enclosure.
6. When replacing the cover, take care that the gasket is in place to assure proper clearance after the cover is secured.
7. All electrical connections must be in accordance with the specifications for which the unit is being used.
8. Should the unit ever require maintenance, remove from the hazardous location before attempting to work on the unit. If the actuator is in a critical application, it is advisable to have a standby unit in stock.
Electric Actuators Performance Rating

TD01
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 4 s, 4 s, 4 s, 4 s
- **Duty Cycle (Two-Position)**: 85%, 85%, 85%, 85%
- **AMP Draw**: 0.24 A, 0.16 A, 0.28 A, 1.28 A
- **Torque**: 177 in-lb, 177 in-lb, 177 in-lb, 177 in-lb

MD01
- **Voltage**: 110 VAC, 220 VAC, 24 VAC
- **Cycle Time**: 20 s, 20 s, 5 s
- **Duty Cycle (Modulating)**: 85%, 85%, 85%
- **AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque**: 265 in-lb, 265 in-lb, 265 in-lb

TD02 and MD02 (MD Not Available in 24 VDC)
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 10 s, 20 s, 5 s
- **Duty Cycle (Two-Position)**: 85%, 85%, 85%
- **AMP Draw**: 0.24 A, 0.16 A, 1.28 A
- **Torque**: 265 in-lb, 265 in-lb, 265 in-lb

TD03 and MD03 (MD Not Available in 24 VDC)
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 5 s, 5 s, 5 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque**: 300 in-lb, 300 in-lb, 300 in-lb

TI01
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 2.5 s, 2.5 s, 2.5 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **Full Load AMP Draw**: 0.64 A, 0.32 A, 0.64 A
- **Torque (in-lb)**: 100 in-lb, 100 in-lb, 100 in-lb

TI02 and MI01, MI02
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 5 s, 5 s, 5 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **Duty Cycle (Modulating)**: 75%, 75%, 75%
- **Full Load AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque (in-lb)**: 200 in-lb, 200 in-lb, 200 in-lb

TI03 and MI03
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 5 s, 5 s, 5 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **Duty Cycle (Modulating)**: 75%, 75%, 75%
- **Full Load AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque (in-lb)**: 300 in-lb, 300 in-lb, 300 in-lb

TI04 and MI04
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 10 s, 10 s, 10 s
- **Cycle Time (Modulating)**: 20 s, 20 s, 10 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **Duty Cycle (Modulating)**: 75%, 75%, 75%
- **Full Load AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque (in-lb)**: 400 in-lb, 400 in-lb, 400 in-lb

TI05 and MI05
- **Voltage**: 110 VAC, 220 VAC, 24 VAC, 24 VDC
- **Cycle Time**: 15 s, 15 s, 15 s
- **Cycle Time (Modulating)**: 30 s, 30 s, 30 s
- **Duty Cycle (Two-Position)**: 25%, 25%, 25%
- **Duty Cycle (Modulating)**: 75%, 75%, 75%
- **Full Load AMP Draw**: 0.38 A, 0.38 A, 0.38 A
- **Torque (in-lb)**: 675 in-lb, 675 in-lb, 675 in-lb

MAINTENANCE/REPAIR

Upon final installation of the Series WE, only routine maintenance is required. The Series WE is not field serviceable and should be returned if repair is needed. Field repair should not be attempted and may void warranty.

WARRANTY/RETURN

Refer to “Terms and Conditions of Sale” in our catalog and on our website. Contact customer service to receive a Return Goods Authorization number before shipping the product back for repair. Be sure to include a brief description of the problem plus any additional application notes.